Uncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation

نویسندگان

  • Jared C. Bronski
  • Tom Gambill
چکیده

We consider the Kuramoto-Sivashinsky (KS) equation in one dimension with periodic boundary conditions. We apply a Lyapunov function argument similar to the one first introduced by Nicolaenko, Scheurer, and Temam [18], and later improved by Collet, Eckmann, Epstein and Stubbe[1], and Goodman [10] to prove that lim sup t→∞ ||u||2 ≤ CL 3 2 . This result is slightly weaker than that recently announced by Giacomelli and Otto [9], but applies in the presence of an additional linear destabilizing term. We further show that for a large class of functions φx the exponent 3 2 is the best possible from this line of argument. Further, this result together with a result of Molinet[17] gives an improved estimate for L2 boundedness of the Kuramoto-Sivashinsky equation in thin rectangular domains in two spatial dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Parameter-dependent Bounds for Kuramoto-sivashinsky-type Equations

We derive a priori estimates on the absorbing ball in L2 for the stabilized and destabilized Kuramoto-Sivashinsky (KS) equations, and for a sixth-order analog, the Nikolaevskiy equation, and in each case obtain bounds whose parameter dependence is demonstrably optimal. This is done by extending a Lyapunov function construction developed by Bronski and Gambill (Nonlinearity 19, 2023–2039 (2006))...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Effective Estimates of the Higher Sobolev Norms for the Kuramoto-sivashinsky Equation

We consider the Kuramoto-Sivashinsky (KS) equation in finite domains of the form [−L, L]. Our main result provides effective new estimates for higher Sobolev norms of the solutions in terms of powers of L for the onedimentional differentiated KS. We illustrate our method on a simpler model, namely the regularized Burger’s equation. The underlying idea in this result is that a priori control of ...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Finite Difference Discretization of the Kuramoto–sivashinsky Equation

We analyze a Crank–Nicolson–type finite difference scheme for the Kuramoto– Sivashinsky equation in one space dimension with periodic boundary conditions. We discuss linearizations of the scheme and derive second–order error estimates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008